Research Labs

Our research advances the state of the art in semantic technology, biostatistics, and the modeling of biomedical systems to benefit clinical and translational research as well as patient care. Our work enables the Institute of Medicine’s vision for a Learning Health System by translating biomedical data into actionable insights for decision making.

Musen Lab

Mark Musen studies the development of semantic technology for use in biomedicine. A long-standing interest in clinical decision-support systems has stimulated investigation of computational frameworks to make decision-support systems more useful and more maintainable.  More

 Less 

Hernandez-Boussard Lab

A key focus of our group research is the application of novel methods and tools to large clinical datasets for hypothesis generation, comparative effectiveness research, and the evaluation of quality healthcare delivery. More 

 

 Less 

Gentles Lab

Shah Lab

Our group develops methods to analyze large unstructured data sets for data-driven medicine. We use ontology based approaches to annotate, index and analyze Big Data in biomedicine for enabling data-driven decision making in medicine and health care. We have developed methods that transform unstructured patient notes into a de-identified, temporally ordered, patient-feature matrix.  More

 Less 

Gevaert Lab

The unprecedented wealth of data currently that is being generated in medicine creates new challenges in understanding and using these data for personalized medicine. My lab focuses on exploiting the synergies  More  that are present between data at different scales.  This ranges from molecular data ( e.g., genome sequencing, gene expression), to cellular data (e.g., histological images) and tissue-scale data (e.g., in vivo CT or MR images). We develop computational methods drawn from statistics and mathematics, and apply these to improve decision-support models to personalize diagnosis, prognosis and therapy. Currently the lab focuses on applications in oncology and neuroscience.
 Less 

Chen Lab

The Chen lab is focused on discovering and distributing the latent knowledge embedded in clinical data. Tapping into real-world clinical data streams like electronic medical records with machine learning and data analytics will reveal the community's latent knowledge in a reproducible form.  More Delivering this back to clinicians, patients, and healthcare systems as clinical decision support will uniquely close the loop on a continuously learning health system. Our lab members seek to empower individuals with the collective experience of the many, combining human and artificial intelligence approaches to medicine that will deliver better care than either can do alone.

 Less 

Desai Lab

Dr. Desai is the Director of the Quantitative Sciences Unit. She is interested in the application of biostatistical methods to all areas of medicine including oncology, nephrology, and endocrinology. She works on methods for the analysis of epidemiologic studies, clinical trials, and studies with missing observations.

Khatri Lab

Housed in the Stanford Institute for Immunity, Transplantation and Infection, and Biomedical Informatics Research in the Department of Medicine, our lab focuses on novel translational bioinformatics approaches to translation medicine in the broad domains of autoimmunity, infection, and inflammation.